

Progression of skills

At Portswood Primary Academy Trust, we strive for achievement for all our pupils and believe that all pupils should develop a passion for maths.

We want pupils to be confident in their use of maths; being able to identify where the maths is in the problems they are faced with, to prepare them for its use in the real world, and to ensure that they are ready for the next stage of their mathematics education.

Our aims for maths, reflect the aims of the National Curriculum. Pupils should:

- Become fluent in the fundamentals of Maths
- Reason mathematically
-Solve problems

Pupils, at Portswood Primary School, should have a secure knowledge of mathematical facts and be able to recall them rapidly. Ensuring that pupils retain a knowledge of number, other mathematical facts or the processes of calculation, will mean they are not a barrier to use in wider mathematics.

Maths teaching should be supported by using a concrete, pictorial, abstract approach.

$$
2+1=3
$$

ABSTRACT
This allows for secure retention of key mathematical concepts.
Manipulative resources should be available until a pupil is confident working with abstract concepts. They may be returned to at any time.

Early years

- I can add numbers up to 10 using objects
- I can count on to find an answer

Additional support
To support children in Early years we do the following:

- Accurate touch counting.
- Accurate counting in order.
- Cardinal number.
- Concrete apparatus.
- Repetition.

Core methods
In Early years we teach our addition with story based context and real life context. This is supported with visual images. We then progress onto concrete addition, such as using counters on a tens frame. Later on we introduce the numeral representation and symbol (+).

Beyond expectations
To challenge our children they complete number sentences without concrete apparatus. They will use their fingers or own pictorial representations to
 support. We further challenge with the introduction of adding on a number line.

Early years

 $\because \quad$ Primary SchoolChildren's work

Year 1

By the end of the year I can...

- I know my number bonds to 20
add one - digit and two - digit numbers to 20
solve one step problems using addition
solve missing number problems up to 20
Additional support
To support children in Year 1 we use concrete apparatus with a focus on numbers from 1-20. We get children to move objects to support their addition. We then progress onto concrete tens frame. Once confident, we progress onto pictorial support with children counting pictures to add together.
Core methods
In Year 1 we start with a concrete apparatus of tens frames with children physically moving counters. We then progress on to counters and numicon before introducing addition on a number line. First, we provide a concrete number line so that children can use their fingers to add on. We then progress onto pictorial with writing on a given structured number line, before finally being able to independently draw and write our own to support our addition with a focus of numbers from 1-40.
Beyond expectations

To challenge our children we provide blank number lines, as well as using numbers up to $\mathbf{1 0 0}$. We can further challenge our higher attaining children by adding in 2 s and 10 s .

I can record the answer.
I used:

$15+4=$
$8+5=13$

\square

$11+7=18 \quad$

Year

By the end of the year I can...

- remember my addition number facts to 20
- begin to use number facts, when adding, up to 100
- add a two-digit number and ones $(13+3 \equiv 16)$
- add a two -digit number and tens $(21+30 \equiv 51)$
- add two two - digit numbers $(65+34=99)$
add three one - digit numbers $(5+8+9=22)$

Additional support

To support children in Year 2 we add numbers that are below 20 without exchanging. We also use concrete support such as dienes, objects and scaffold layouts.

Core methods

In Year 2 we partition numbers and use tens and ones to work out answers. We use a pictorial method; drawing tens and ones. We work with numbers up to 100 . Follow the steps on the next page to see how we present our working out!
Beyond expectations
To challenge our higher attaining children we add numbers above 100 as well as including more complex problems, such as 2 step problems.

Steps

1. Write number sentence

$$
26+35=
$$

2. Partition both numbers into tens and ones (hundreds if needed)

3. Count tens - (e.g. $10,20,30,40,50$) (/ cross off when counting)

4. Count ones - (egg $51,52,53,54,55,56,57,58,59,60,61)$
(/ cross off when counting)

5. Write the total amount

Year 2
Children's work

$$
\begin{aligned}
& 12+17=29= \\
& +\quad+\therefore:
\end{aligned}
$$

$$
18+
$$

$\cdots \circ$
:8 品
\square

$$
23+4=27
$$

YÝ, ź, ý

$$
\begin{aligned}
& 116+24=140 \\
& D+1: 1 \\
& \square 1, i,
\end{aligned}
$$

Year

By the end of the year I can...

- add mentally a three digit number and ones ($106+8 \equiv 114$)
- add mentally a three -digit number and tens $(121+30=151)$
- add mentally a three - digit number and hundreds $(165+349=514)$ add numbers with up to three - digits
use the column method to add with three-digit numbers
Additional support
To support our children we use concrete apparatus such as dienes and counters as well as focusing our learning on our number bonds to 10/20. We then progress onto Year 2's pictorial method of partitioning tens and ones.

Core methods
In Year 3 we teach children an abstract method of expanded column. This develops on Year 2's pictorial method as we equally partition the numbers but progress into a written method. To challenge our children we introduce adding 3 digit numbers (e.g. $142+231$) as well as introducing exchanging 10's.

Beyond expectations
To challenge our children we introduce compact column method (a Year 4 method) as well as exchanging more than once in a calculation.

$$
\begin{aligned}
& \text { partitionrecombine tens \& ones \& hundreds } \\
& \text { columin add plus more than } \\
& \text { increase exchange } \\
& \hline
\end{aligned}
$$

Steps

1. Write number sentence

$$
26+48=
$$

2. Partition your numbers into tens and ones (hundreds if needed)

2	6	4	$8=$
1	1	1	1
20	6	40	8

3. Write your expanded column method with your partitioned numbers

4. Add ones column (exchange into next place value if needed))

5. Add tens column

6. Add your partitioned numbers to work out your total

$$
\begin{array}{r}
1 \\
20 \quad 6 \\
+\frac{40}{40} \\
\hline 70+4 \\
\hline 10
\end{array}=74
$$

Children's work
$117+28=145 v$
$100 \quad 1087$
$\frac{100 \frac{20}{40} 5}{10}$
$237+25=262$
$H \quad 100$
$200 \quad 30 \quad 7$
$200+60+22262$
$318+73 a=457 \mathrm{~V}$

$$
\begin{aligned}
& 37+25=62 \\
& 307 \\
& 20 \quad 5 \\
& \hline 60 \quad 2
\end{aligned}
$$

$$
268+24=242
$$

20	0	60	8
	200	4	
20	0	90	2
	10		

Addition Word Problems

1. There are 143 books in one classroom and 47 books in another classroom. What is the total number of books in both classrooms?

$$
\begin{aligned}
& 143+47=790 \text {, bootes } \\
& H 100 \\
& 100 \quad 40-3 \\
& 100+90+0=190 \text { bares } \\
& \begin{array}{l}
100
\end{array} \\
& \begin{array}{l}
100
\end{array}
\end{aligned}
$$

Year 4

By the end of the year I can...

- add numbers with up to 4 digits
- use methods of column addition
- estimate to check my answer
- solve problems with two steps.
- explain the method I used and why

Additional support
To support our children we use concrete apparatus with dienes, counters and place value counters. We then progress onto pictorial and use the expanded column method previously taught in Year 3 but adding numbers that require no exchanging.

Core methods

In Year 4 we teach children an abstract method of compact column addition. This develops on Year 3's expanded column method. We focus on numbers from thousands depending on confidence and attainment. Follow the steps on the next page to see how we present our working out!

Beyond expectations
To challenge our children we use larger numbers with a focus on exchanging. We also complete reasoning challenges.

1. Write number sentence

$$
267+184=
$$

2. Set your number sentence into compact column method

(thousands if needed)
3. Add ones column (exchange into next place value if needed))

When exchanging you must remember to record your 10
5. Add hundreds column

$$
\begin{array}{r}
H T \\
26 \\
+18
\end{array}
$$

6. Record your answer

$$
267+184=451
$$

4. Add tens column (exchange into next place value if needed))

Year 4
Children's work

| Th | H | T | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 8 | 4 | 1 |
| 2 | 9 | 7 | 5 |
| 9 | 8 | 1 | 6 |
| 1 | 1 | | |

By the end of the year I can...

- add whole numbers with more than 4 digits
- add numbers mentally with more than 4 digits
- use rounding to check calculations and accuracy
- solve multi - step problems
- explain the method I used and why

Additional support
To support our children we use concrete apparatus with adding within hundreds. These could be dienes, counters or objects. We also add numbers that do not require exchanging. We then progress onto pictorial support.
Core methods
In Year 5 we continue teaching our children compact column method (as previously taught in Year 4). We focus on adding 4 or more digit numbers. Follow the steps on the next page to see how we present our working out!
Beyond expectations
To challenge our children we add decimals, as well as introducing reasoning and problem solving.

Exchange Add
Addifition
Sum
Total
Aliogether Plus Combined Increase Place value holder Ones/ tens/ hundreds/ thousands tenths/ hundrediths

Steps

1. Write number sentence in compact column method

Make sure we put our numbers in the right columns
2. Add ones and record total added (e.g. $12=1$ ten and 2 ones) (Exchange tens over into the next place value holder if needed)

3. Add tens and record total added - (e.g. $110=1$ hundred and 1 ten) (Exchange hundreds over into the next place value holder if needed)

Remember to add the exchanged place value
4. Add remaining and work out the total (Exchange place value over into the next place value holder if needed)

$$
\begin{array}{r}
4565 \\
+\quad 347 \\
\hline 4912 \\
x \times
\end{array}
$$

We also use this method in Year 4 and 6!

Year 5
Children's work

$$
\begin{aligned}
& \begin{array}{r}
10779 \\
+\quad 5421 \\
\hline 16200
\end{array}+\begin{array}{r}
56184 \\
11738 \\
\hline 59922 V
\end{array} \\
& \begin{array}{r}
772366 \\
+\quad 89235 \\
\hline 861691
\end{array}+\frac{27899}{20111} \\
& 456.17 \\
& +\frac{25484}{71101}
\end{aligned}
$$

Yearlo

By the end of the year I can...

- use mental calculations using mixed operations
- use my knowledge of the order of operations to carry out calculations (BODMAS - sometimes referred as BIDMAS)
- solve multi - step problems using formal methods
- use estimation to check answers to calculations and accuracy
- use mental calculations to solve problems using known facts e.g. 7+3 $=10$ so $700+300=1000$
- use formal written methods to calculate addition up to 10 million

Additional support
To support our children we use concrete apparatus, such as using dienes to show exchanging. We also use place value grids and place value counters.
Core methods
In Year 6 we continue using compact column method with a focus on larger numbers, as well as adding with decimals. Follow the steps on the next page to see how we present our working out!
Beyond expectations
To challenge our higher attaining children we add larger numbers, as well as introducing reasoning and problem solving.

Steps

1. Write number sentence in compact column method

Make sure we put our numbers in the right columns
2. Add ones and record total added (e.g. 12-1 ten and 2 ones) (Exchange tens over into the next place value holder if needed)

3. Add tens and record total added - (e.g. 110-1 hundred and 1 ten) (Exchange hundreds over into the next place value holder if needed)

Remember to add the exchanged place value
4. Add remaining and work out the total (Exchange place value over into the next place value holder if needed)

$$
\begin{array}{r}
4565 \\
+\quad 347 \\
\hline 4912 \\
x \times
\end{array}
$$

Adding decimals
We use the same method for adding decimals. We must make sure that we put our numbers in the correct columns and include the decimal place.

4565.00
$+\quad 347.05$
4912.05
$y x$

Year 6
Children's work

